Servobewegungseinphasiger 400W industrieller Servomotor Yaskawa 0.75kW SGMAH-08AAF41
SCHNELLE DETAILS
Hersteller: Yaskawa
Produktzahl: SGMAH-08AAF41
Beschreibung: SGMAH-08AAF41 ist ein Servo Motor-Wechselstrom, das durch Yaskawa hergestellt wird
Servomotor-Art: SGMAH-Sigma II
Nennleistung: 750W (1.0HP)
Stromversorgung: 200V
Ertraggeschwindigkeit: 5000 U/min
Drehmomentbewertung: 7,1 Nanometer
Minimale Betriebstemperatur: 0 °C
Normalbetriebshöchsttemperatur: °C +40
Gewicht: 8 lbs
Höhe: 3,15 Zoll
Breite: 7,28 Zoll
Tiefe: 3,15 Zoll
Kodierer-Spezifikationen: Bit 13 (2048 x 4) Zuwachskodierer; Standard
Revisions-Niveau: F
Wellen-Spezifikationen: Gerade Welle mit der Keilnute (nicht verfügbar mit Revisionsniveau N)
Zusätze: Standard; ohne Bremse
Wahl: Kein
Art: keine
ANDERE ÜBERLEGENE PRODUKTE
Yasakawa-Motor, Fahrer SG |
Mitsubishi-Motor HC-, ha |
Westinghouse-Module 1C-, 5X- |
Emerson VE, kJ |
Honeywell TC, TK |
GE-Module IC - |
Fanuc-Motor A0- |
Yokogawa-Übermittler EJA- |
Ähnliche Produkte
SGMAH-04AAAHB61 |
SGMAH-04ABA21 |
SGMAH-04ABA41 |
SGMAH-04ABA-ND11 |
SGMAH-07ABA-NT12 |
SGMAH-08A1A21 |
SGMAH-08A1A2C |
SGMAH-08A1A61D-0Y |
SGMAH-08A1A6C |
SGMAH-08A1A-DH21 |
SGMAH-08AAA21 |
SGMAH-08AAA21+ SGDM-08ADA |
SGMAH-08AAA2C |
SGMAH-08AAA41 |
SGMAH-08AAA41+ SGDM-08ADA |
SGMAH-08AAA41-Y1 |
SGMAH-08AAA4C |
SGMAH-08AAAH761 |
SGMAH-08AAAHB61 |
SGMAH-08AAAHC6B |
SGMAH-08AAAYU41 |
SGMAH-08AAF4C |
SGMAH-A3A1A21 |
SGMAH-A3A1A21+SGDM-A3ADA |
SGMAH-A3A1A41 |
SGMAH-A3A1AJ361 |
SGMAH-A3AAA21 |
SGMAH-A3AAA21-SY11 |
SGMAH-A3AAA2S |
SGMAH-A3AAAH761 |
SGMAH-A3AAA-SY11 |
SGMAH-A3AAA-YB11 |
SGMAH-A3B1A41 |
SGMAH-A3BAA21 |
SGMAH-A3BBAG761 |
SGMAH-A5A1A-AD11 |
SGMAH-A5A1AJ721 |
SGMAH-A5A1A-YB11 |
SGMAH-A5A1A-YR61 |
Lassen Sie uns besprechen, warum man sollte einen integralen Faktor in den Gewinn (a) der Steuerung vorstellen. Prophezeien Sie Diagramm zeigt eine nähernde Unendlichkeit, wie die Frequenz null sich nähert. Theoretisch geht sie zur Unendlichkeit an DC, weil, wenn man einen kleinen Fehler in eine Antriebs-/Bewegungskombination der offenen Schleife setzte, um sie zu veranlassen sich zu bewegen, sie fortfahren würde, sich für immer zu bewegen (die Position würde größer und größer erhalten). Deshalb wird ein Motor als Integrator selbst klassifiziert - er integriert den kleinen Positionsfehler. Wenn man die Schleife schließt, hat dieses den Effekt des Fahrens des Fehlers bis null, da jeder möglicher Fehler schließlich Bewegung in der richtigen Richtung veranlaßt, F in Übereinstimmung mit C. zu holen. Das System kommt nur stillzustehen, wenn der Fehler genau null ist! Die Theorie klingt groß, aber in der tatsächlichen Praxis geht der Fehler nicht bis null. Um den Motor zu veranlassen sich zu bewegen, wird der Fehler verstärkt und ein Drehmoment im Motor erzeugt. Wenn Reibung anwesend ist, dass Drehmoment genug groß sein muss, diese Reibung zu überwinden. Der Motor hört auf, als ein Integrator am Punkt, in dem aufzutreten der Fehler gerade unterhalb des Punktes ist, der erfordert wird, um genügendes Drehmoment zu verursachen, um Reibung zu brechen. Das System sitzt dort mit diesem Fehler und Drehmoment, aber bewegt sich nicht.
Die Erregungsreihenfolgen für die oben genannten Antriebsmodi werden in Tabelle 1. zusammengefasst.
In Microstepping-Antrieb unterscheiden sich die Strom in den Wicklungen ununterbrochen, um in der Lage zu sein, einen vollen Schritt in viele kleineren getrennten Schritte oben zu brechen. Mehr Informationen über das Microstepping können sein
gefunden im microstepping Kapitel. Drehen Sie gegen, angeln Sie Eigenschaften
Das Drehmoment gegen Winkeleigenschaften eines Schrittmotors sind das Verhältnis zwischen der Verschiebung des Rotors und das Drehmoment, die auf die Rotorwelle zutrafen, wenn der Schrittmotor an seiner Nennspannung angezogen wird. Ein idealer Schrittmotor hat ein sinusförmiges Drehmoment gegen Verschiebungseigenschaft wie in Abbildung 8. gezeigt
Positionen A und C stellen stabile Gleichgewichtspunkte dar, wenn keine externe Kraft oder Last auf den Rotor zugetroffen wird
Welle. Wenn Sie eine externe Kraft Ta auf die Motorwelle zutreffen, die Sie im Wesentlichen eine eckige Verschiebung schaffen, Θa
. Diese eckige Verschiebung, Θa, gekennzeichnet als eine Führung oder verlangsamt Winkel abhängig von, ob der Motor aktiv beschleunigend oder verlangsamend ist. Wenn der Rotor mit einer angewandten Last stoppt, kommt er, in der Position stillzustehen, die durch diesen Verschiebungswinkel definiert wird. Der Motor entwickelt ein Drehmoment, Ta, in der Opposition zur angewandten externen Kraft, um die Last zu balancieren. Während die Last erhöht wird, erhöht sich der Verschiebungswinkel auch, bis er den maximalen Haltemoment, Th, des Motors erreicht. Sobald Th überstiegen wird, trägt der Motor eine instabile Region ein. In dieser Region, die ein Drehmoment die entgegengesetzte Richtung ist, wird und die Rotorsprünge über dem instabilen Punkt zum folgenden stabilen Punkt geschaffen.
MOTOR SLIP
Der Rotor in einem Induktionsmotor kann sich nicht mit der Synchrondrehzahl drehen. Zwecks
verursachen Sie einen EMF im Rotor, der Rotor muss langsamere als die SS bewegen. Wenn der Rotor zu waren
irgendwie Drehung an SS, der EMF konnte nicht im Rotor und deshalb im Rotor verursacht werden
würde stoppen. Jedoch wenn der Rotor stoppte, oder sogar wenn er erheblich verlangsamte, ein EMF
seien noch einmal in den Rotorstangen verursacht Sie und es würde anfangen, mit einer Geschwindigkeit weniger sich zu drehen
als die SS.
Das Verhältnis zwischen der Rotorgeschwindigkeit und den SS wird den Beleg genannt. Gewöhnlich
Beleg wird als Prozentsatz der SS ausgedrückt. Die Gleichung für den Motorbeleg ist:
2% S = (SS – RS) X100
SS
Wo:
%S = Prozent-Beleg
SS = Synchrondrehzahl (U/min)
RS = Rotor-Geschwindigkeit (U/min)